
IMPLEMENTING PARSERS AND
STATE MACHINES IN JAVA

Terence Parr
 University of San Francisco

Java VM Language Summit 2009

ISSUES

Generated method size in parsers

Why I need DFA in my parsers

Implementing DFA in Java

Predicated DFA edges

My kingdom for dynamic scoping

Exceptions for flow-control

Computed gotos for interpreter instruction dispatch

METHOD SIZE

Methods generated from big grammar rules can blow past
64k bytes (I’m trying to tighten up the generated code)

Solution: manually split rules into multiple; not obvious to
most users

Can’t do automatically due to actions; issues with args/locals

a[int x]
	 :	 A {...$x...}
	 |	 B {...$x...}
	 ;

a[int x] : a1 | a2 ;
a1 :	 A {...$x...} ;
a2 :	 B {...$x...} ;

Won’t compile

LL(*) - MAKING
DECISIONS WITH DFA

Natural extension to LL(k) lookahead DFA: Allows cyclic DFA
that can skip ahead past the modifiers to class or interface def

Don’t approximate entire CFG with a regex; i.e., don’t include
class or interface def rules

Predict and proceed normally with LL parse

// LL(*), but non-LL(k) for any k
def : modifier* classDef
 | modifier* interfaceDef
 ;

s1

 'public'..

 'abstract'
s3=>2'interface'

s2=>1

'class'

SIMULATING STATE
MACHINES

Simulate DFA with bunch of tables

sipush n
newarray int ; create array

dup ; dups array
sipush i ; push index
iconst_0 ; value to store
iastore

public class T {
 static int[][] states
 static int[] s0 = {
 0, 0, 0, 2, 0, 0, 8, 0, 0, 0,
 0, 0, 0, 0, 1, 1, 0, 0, 1, 0,
 ...
 };
 static int[] s1 = { ... };
 ...
 static int[][] states = {s0, s1, ...};
}

No static arrays in .class:
must init elements 1-by-1

5 or 6 bytes per element
leaves room for only 10k
elements for all tables
in static ctor

aside from being slow to initialize, we
run into the method size limit

IMPL. DFA WITH GOTO

To avoid static init issue, encode directly in Java.

Idea is to use CPU jmp instruction to change state. States are
code addresses. Avoids big matrices, vectors.

“LR parsers can be made to run 6 to 10 times as fast as the
best table-interpretive LR parsers.”*

But, can’t do arbitrary cyclic graphs w/o gotos in Java

Why not generate bytecodes directly?

because of predicated DFA edges; might have to compile
arbitrary Java expressions (more in a second...)

* Thomas Pennello, Very Fast LR Parsing in Proceedings of the 1986
SIGPLAN symposium on Compiler construction

SO, WHAT DO WE DO?

No gotos => must simulate DFA with arrays

Encode shorts as chars: 0,9,32 is “\u0000\u0009\u0020”

Encode arrays as strings, which are stored statically in the
constant pool, to avoid static init size limit (got trick from
jflex)

Have to unpack into short/int arrays at runtime to initialize

Run-length-encode to compress sparse matrices/arrays

PREDICATED DFA

Edges can be arbitrary expressions; can ref locals and
parameters; can’t move predicates out of method() to
predict()

method[boolean isAbstract]
	 :	 methodHead
	 	 ({isAbstract}?=> ';'
	 	 |	 ‘{‘ stat* ‘}’
)
	 ; s0

s1=>1';'&&{(isAbstract)}?

s2=>2

'{'

void method(boolean isAbstract) {
 methodHead();
 int alt = dfa39.predict(input);
 switch (alt) { ... }
}

Won’t compile in predict()

DYNAMIC SCOPING

Idea: f() calls g(); g() can see f()’s parameters and locals

Mostly evil, but solves some code gen issues:

let’s us automatically split large rule methods

let’s us move predicates out of context in generated DFA

Or, I could manage my own parameter stack;
can’t do that for locals, though (defined in arbitrary code)

 USING EXCEPTIONS
FOR CONTROL FLOW

Backtracking parser must rewind upon failure and try next
alternative

IF-gates after every rule/token match is slow, big, messy

But, aren’t exceptions very slow? Gafter told me only
creating an exception object is slow; throwing is fast. I’m
guessing faster than testing failed all the time

// code for an alternative
match(ID); if (failed) return;
match(‘=’); if (failed) return;
expr(); if (failed) return;
...

alternative1
if (!failed) return;
rewind input
alternative2
...

BYTECODE
INSTRUCTION DISPATCH

while (code[ip]!=HALT) {
 switch (code[ip]) {
 case ADD : ... break;
 case JMP : ... break;
 case RET : ... break;
 }
 ip++;
}

Overhead of fetch-decode-execute cycle switch/loop is high

Poor cache characteristics; perhaps even pipeline issues

Typical structure:

COMPUTED GO TO

Threaded interpreter puts dispatch into instruction
implementation code; no loop; better cache characteristics

Dalvik VM trick: don’t even use address table; allocate n bytes
per implementation where n is power of 2. Instr impl address is
 &firstInstr+code[ip]<<lgn.
E.g., impl.’s at offsets 0, 16, 32, 48, ... for n=16

codeptr[] impl = { &ADD, &JMP, &RET, ... };

ADD: ... goto impl[code[++ip]];
JMP: ... goto impl[code[++ip]];
RET: ... goto impl[code[++ip]];

CONCLUSIONS

From language implementors point of view, would be nice to have:

>64k bytecodes in methods

static arrays in .class files

gotos for DFA

dynamic scoping (splitting rules, predicated DFA edges)

computed gotos for interpreters

I’m not suggesting exposing all this to Java users

Perhaps secret option Neal Gafter quietly gives out? ;)

